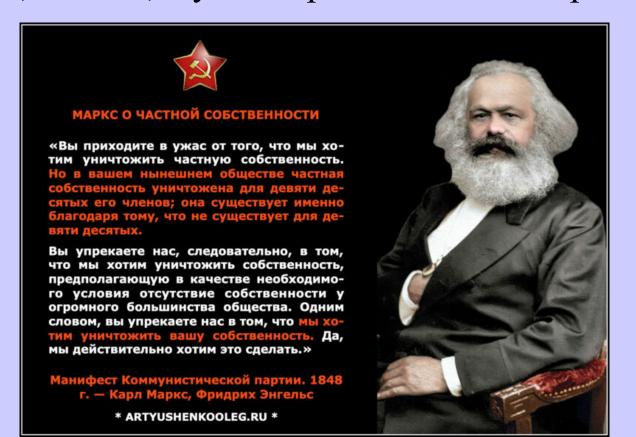
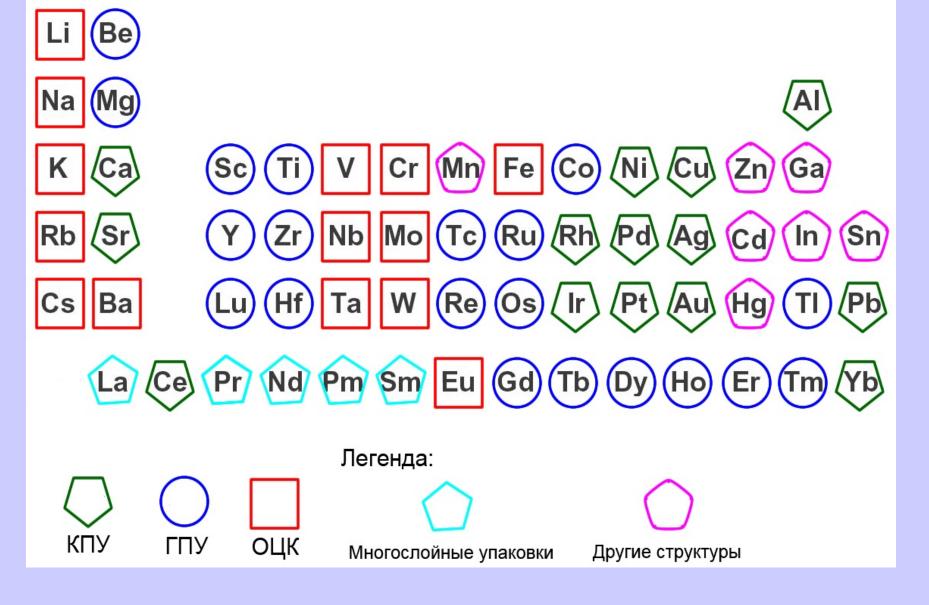
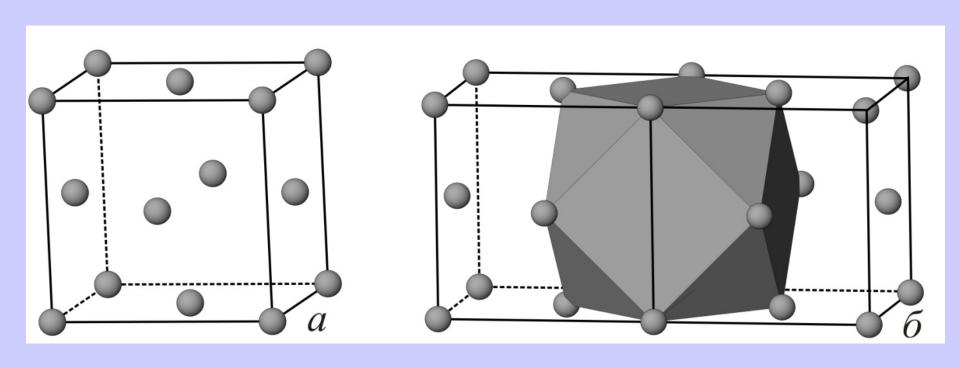

Лекция 8 Металлическая связь Структуры металлов

В-д-В связь


Водородная связь —

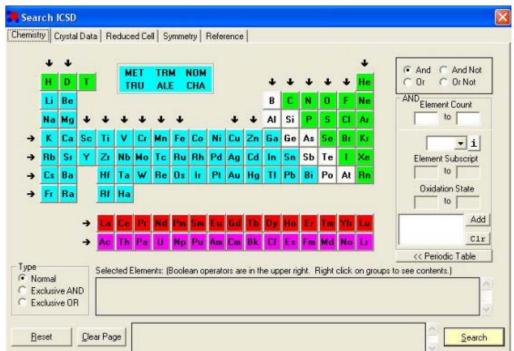
Металлическая связь

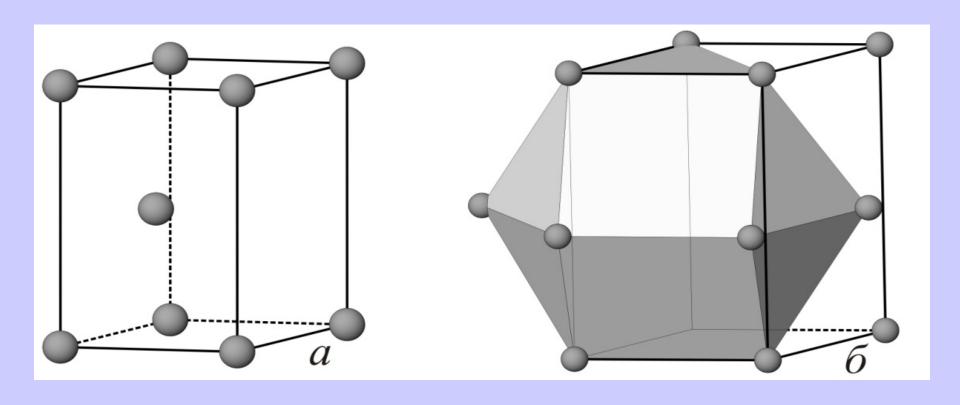

• Коллективизацию электронов в металлическом кристалле часто представляют следующим образом: положительно заряженные остовы атомов «плавают» в отрицательно заряженном «электронном газе» (общем!), оставаясь, однако, в узлах кристаллической решетки.


Поэтому **структура типичного металла** не обнаруживает признаков направленности связи и либо подчиняется законам плотнейших упаковок, либо приближается к ним

Металлическая связь ненаправленная и ненасыщаемая

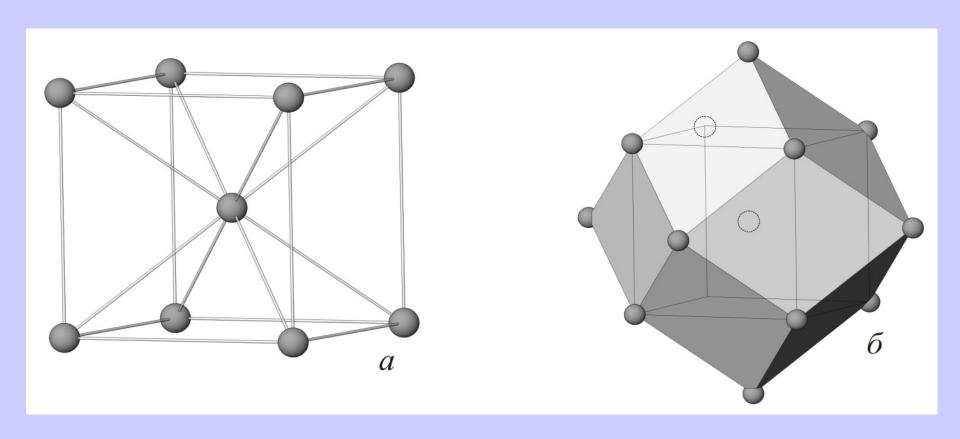
Стабильные при стандартных условиях кристаллические структуры элементов-металлов Периодической системы

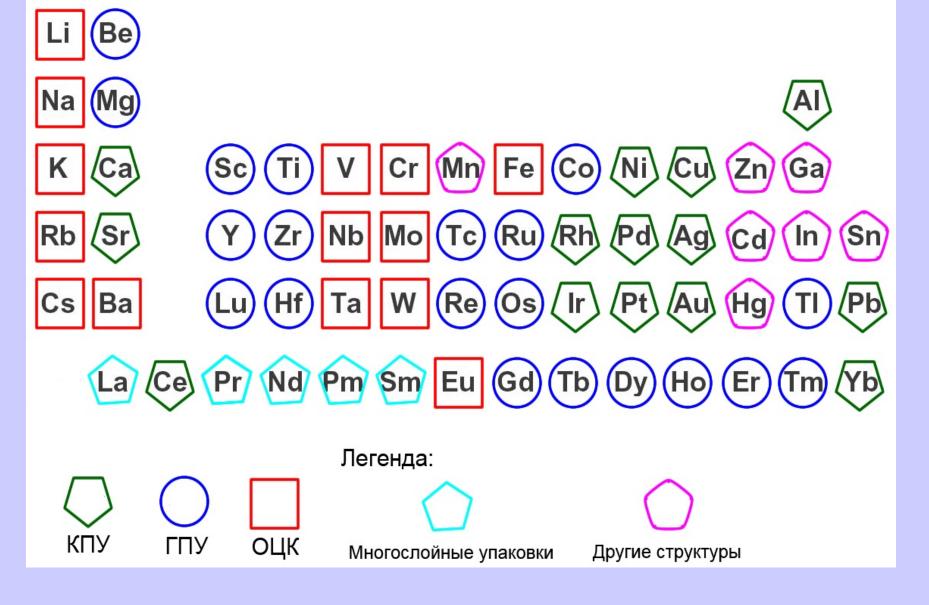



1) СТ Си (ГЦК)

Аg; код =52257; a= 4,0855 Å	Ne; код =24602 ; <i>a</i> = 4,52 Å
Al; код =53774; a= 4,046 Å	Ni; код =41508; <i>a</i> = 3,45Å
Ar; код =24788; a = 5,256 Å	Рb; код =52253; <i>a</i> = 4,9496 Å
Аu; код =52249; <i>a</i> = 4,0781 Å	Pd; код =64914; a= 3,991Å
Са; код =44348; <i>a</i> = 5,5884 Å	Рt; код =41525; <i>a</i> = 3,97 Å
Се; код =150482; a = 5,14 Å	Rh; код =52252; a= 3,8043 Å
Си; код =52256; <i>a</i> = 3,615 Å	Sr; код =77368; <i>a</i> = 6,061 Å
$Fe(\gamma)$; код =53449; a = 3,6544 Å	Th; код =53787; a = 5,12 Å
Іг; код =53813; a = 3,815 Å	Хе; код =43428; <i>a</i> = 6,1317 Å
Kr; код =43726; a= 5,638 Å	Yb; код =653477; <i>a</i> = 5,4847 Å

ICSD (<u>Inorganic Crystal Structure Database</u>) https://www.fiz-karlsruhe.de/en/leistungen/kristallographie/icsd.html - крупнейшая в мире база данных достоверных структурных расшифровок для неорганических кристаллов. База данных создана и поддерживается институтом Лейбница в Карлсруэ (Германия) и в настоящее время содержит около двухсот тысяч расшифрованных кристаллических структур неорганических соединений. Обновления базы проводятся дважды в год (весной и осенью), когда происходит ее пополнение данными, полученными из научных журналов и других достоверных источников. Ежегодно к ICSD добавляется около 6000 структур.

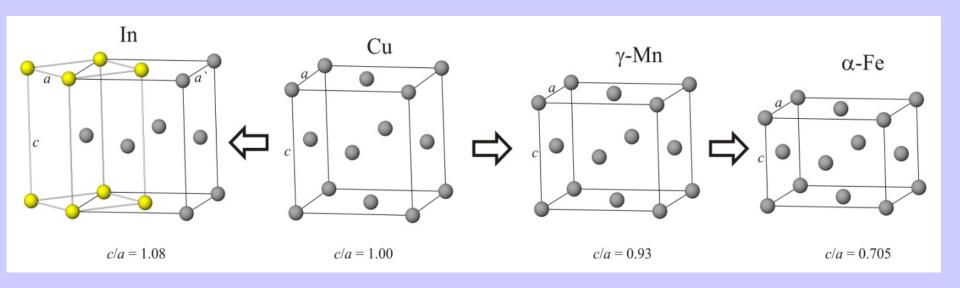

Оконный интерфейс ICSD современен, прост в использовании и обеспечивает разнообразные возможности поиска необходимой информации. Каждый набор данных содержит полную информацию о структуре неорганического кристаллического соединения. Карточка содержит также библиографическую информацию о структуре и, в большинстве случаев, также ссылку на соответствующий полнотекстовый первоисточник информации. Возможен поиск по физическим и химическим свойствам соединения.


2) СТ Mg (ГПУ- плотнейшая гексагональная упаковка

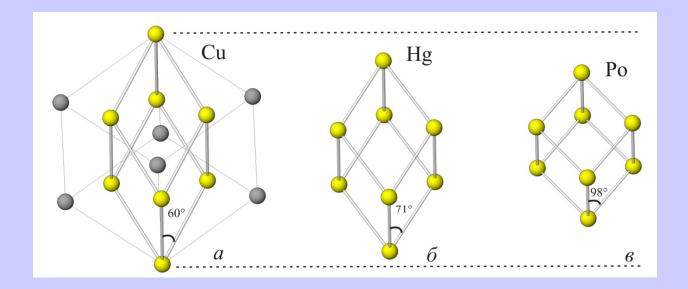
Формула	ICSD код	a, Å	c, Å	c/a
Ru	40354	2,7508	4,2819	1,557
Be	1425	2,2858	3,5843	1,568
Но	56226	3,5773	5,6158	1,570
Er	53387	3,5588	5,5874	1,570
Y	660002	3,6474	5,7306	1,571
Tm	43584	3,5372	5,5619	1,572
Dy	53357	3,5903	5,6475	1,573
Mg	52260	3,3085	5,2106	1,575
Os	40323	2,724	4,295	1,577
Tb	52495	3,601	5,6936	1,581
Lu	44909	3,5031	5,5509	1,585
Ti	43416	2,95111	4,68433	1,587
Gd	43579	3,631	5,777	1,591
Zr	53785	3,23	5,14	1,591
Sc	52411	3,3088	5,268	1,592
Tl	77372	3,4566	5,5248	1,598
Тс	52498	2,743	4,4	1,604
Не	44396	3,531	5,693	1,612
Re	40355	2,76	4,458	1,615
Ce	53776	3,66	5,92	1,617
Co	53806	2,514	4,105	1,633
Hf	53786	3,32	5,46	1,645
Zn	53769	2,67	4,966	1,860
Cd	53770	2,966	5,606	1,890

3) СТ α-Fe (ОЦК- объемноцентрированная кубическая упаковка)

Li; код =53752; <i>a</i> = 3,507 Å	Сr; код =44731; <i>a</i> = 2,88494 Å
Na; код =44757; <i>a</i> = 4,235 Å	V; код =151408; <i>a</i> = 3,0338 Å
К; код =53754; <i>a</i> = 5,21 Å	Nb; код =151406; <i>a</i> = 3,2941 Å
Rb; код =44755; <i>a</i> = 5,605 Å	Та; код =151407; <i>a</i> = 3,2959 Å
Сs; код =44754; <i>a</i> = 6,067 Å	Мо; код =643959; <i>a</i> = 3,1403 Å
Ва; код =44719; <i>a</i> = 5,01 Å	W; код =653433; <i>a</i> = 3,1585 Å
Fe; код =52258; <i>a</i> = 2,8665 Å	Еu; код =44498; <i>a</i> = 4,582 Å

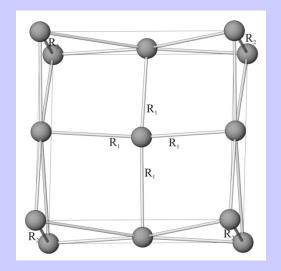


Стабильные при стандартных условиях кристаллические структуры элементов-металлов Периодической системы

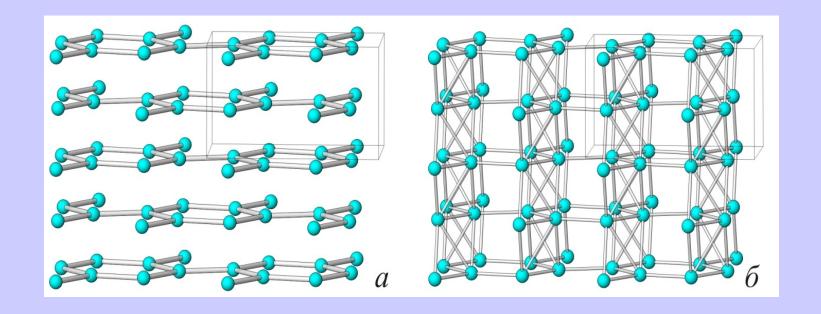

Структуры с многослойными упаковками

Формула	ПУ	ICSD код	a, Å	c, Å
La	4 (κε) ₂	641380	3,77	12,159
Pr	4 (κε) ₂	649183	3,672	11,834
Nd	4 (кг) ₂	645585	3,658	11,799
Am	4 (кг) ₂	609752	3,473	11,232
Cm	4 (кг) ₂	622376	3,52	11.356
Bk	4 (кг) ₂	617264	3,412	11,06
Cf	4 (кг) ₂	622351	3,38	11,025
Sm	9 (кгг) ₃	76031	3,621	26,25

Если обычно отношение c/a лишь немного отличается от идеального (1.57-1.65), как для структур Mg (1.62), β -Ca (1.64), Ве (1.57) и др., то для структур Zn и Cd оно заметно увеличено и достигает 1.86 и 1.89 соответственно.



Структуры металлов, которые получаются деформацией ГЦК


Структура ртути в сравнении со структурой меди

(увеличение КЧ)

Структура белого олова

В результате «сжатия» СТ алмаза тетраэдр сильно сплющивается, и кроме четырех атомов, находящихся в его вершинах, ближайшими соседями каждого атома Sn оказываются еще два атома вдоль оси L_4 . Четыре кратчайших расстояния Sn-Sn равны 3,03 Å, два следующих 3,18Å и еще четыре соседа располагаются на расстояниях 3,76Å, отличающихся от самых коротких на 20%. Итак, координационное число белого Sn может быть представлено в виде 4+2+4=10.

Своеобразной ромбической (псевдотетрагональной) структурой отличается кристаллический галлий. Формально в нем можно выделить искаженные графитоподобные слои с тремя ближайшими соседями, однако в отличие от графита кратчайшие расстояния между атомами в слое (в среднем 2,62 Å) лишь немного меньше, чем между «слоями» (в среднем 2,76 Å). За счет соседних слоев КЧ становится равным 7, и структуру в общем нельзя рассматривать как слоистую.

Кристалл	R_1 (K \mathbf{H}_1)	$R_2 (K \mathbf{H}_2)$	R_2/R_1	КЧ ₁ +КЧ ₂
S	2,02 (2 - в кольце)	3,30 (4 между кольцами)	1,63	6
Se	2,36 (2 - в цепи)	3,21 (4 между цепями)	1,36	6
Te	2,84 (2 - в цепи)	3,39 (4 между цепями)	1,19	6
Po	3,36 (6)	4,40 (6)	1,31	12

В ряду S-Те (Ро) происходит переход от типично молекулярной структуры ромбической серы (молекула S_8 с расстоянием S-S внутри молекулы 2,11, а между ними 3,27 Å) до структуры полуметаллического полония, близкой к структурному типу ртути (КЧ = 6), описанному выше как искажение плотнейшей кубической упаковки

Кристалл	R_1 (K \mathbf{H}_1)	R_2 (K Ψ_2)	R_2/R_1	КЧ ₁ +К Ч ₂
As	2,51 (3 – в слое)	3,15 (3 – между слоями)	1,25	6
Sb	2,87 (3 – в слое)	3,37 (3 – между слоями)	1,17	6
Bi	3,10 (3 – в слое)	3,47 (3 – между слоями)	1,12	6

Разница в расстояниях внутри слоя и между слоями постепенно уменьшается, и в случае полуметаллического Ві составляет лишь 12 %

В целом, благодаря усилению металлических свойств сверху вниз и справа налево в Периодической Системе, полуметаллы (металлоиды) образуют диагональный пояс, передвигаясь от третьей (B, Ga), к четвертой (β-Sn), пятой (Sb, Bi) и шестой (Та, Ро) группам. Слева от них располагаются типичные металлы, а справа – неметаллы.

- Очень сложные структуры имеют различные по симметрии полиморфные модификации кристаллического бора, первого элемента *металлоидного пояса*, с числом атомов в элементарной ячейке от 12 до 1708.
- В них КЧ(В)=5 и выше, а расстояния В-В колеблются в пределах от 1,72 до 1,92 Å.
- Такие структурные особенности указывают на сильное влияние направленности связи, так как КЧ=5 отвечает правилу октета. Однако более высокие значения КЧ для некоторых других позиций В в этих структурах отражают вклад металлической составляющей связи

- Строение таких молекул, как Li_2 , Na_2 и другие, очень похоже на строение молекулы H_2 : σ -связь между атомами осуществляется благодаря перекрыванию s-орбиталей атомов
- В парах атомы типичных металлов связываются друг с другом ковалентными связями. Энергия связи для них подчиняется общей для других ковалентных молекул зависимости от межатомного расстояния
- Иное положение возникает при конденсации таких молекул и образовании кристалла. Результатом является появление огромного числа нелокализованных, или *многоцентровых орбиталей*, которые захватывают весь кристалл
- Поэтому дискретные уровни, на которых располагаются электроны в изолированных атомах, при образовании кристалла расплываются в полосу, энергетическую зону

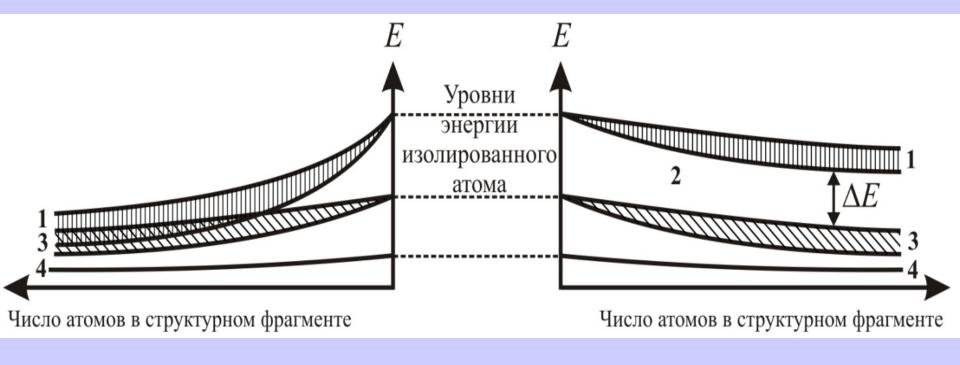


Схема взаимного расположения энергетических зон: слева - металл, справа - полупроводник или диэлектрик;

- 1 зона проводимости, 2 запрещенная зона,
- 3 валентная зона, 4 внутренний уровень, ΔE ширина запрещенной зоны (2)

- Величина запрещенной зоны ΔE близка к тепловой энергии (серое олово со структурой алмаза). Поэтому большое число электронов из валентной зоны перескакивает в зону проводимости, где они коллективизируются всеми атомами кристалла
- ! При температурах ниже 13,2 °C устойчиво <u> α -Sn (серое олово)</u> кубической структуры типа алмаза; плотность 5,85 г/см³. Переход $\beta \rightarrow \alpha$ сопровождается превращением металла в порошок. При -33 °C скорость превращений становится максимальной. Причём соприкосновение серого олова и белого приводит к «заражению» последнего.


металл

Сказки интернета

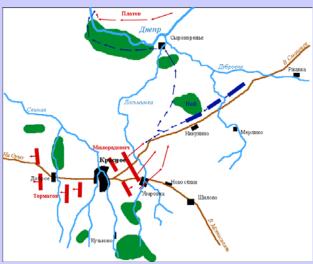
Гроза 12-ого года настала...
Кто тут нам помог?
Остервененье ли народа?
Барклай? Зима?
Иль русский бог?

Но бог помог - стал ропот ниже, И скоро силою вещей Мы очутилися в Париже, А русский царь главой царей.

<u>Какие 2 вывода из этого отрывка Евгения Онегина</u> <u>можно сделать?</u>

- Пушкин не изучал в царскосельском лицее кристаллохимию, иначе точно бы придумал рифму про β-α оловянный переход...
- 2) Полиморфные переходы якобы творят историю государств и континентов. Отнесемся к ним уважительно. (Но преувеличивать нужно в меру.. до Смоленска было не особо

холодно, кстати)


К слову, о водородной связи (сегодня чуть позже) Сражение под Красным 15-18 ноября 1812 г.

Есть показания о командовании Нея в критический момент. Ней сказал своим офицерам: «Продвигаться сквозь лес! Нет дорог? Продвигаться без дорог! Идти к Днепру и перейти через Днепр! Река ещё не совсем замёрзла?

Замёрзнет! Марш!»

Ней с остатком корпуса в 3 тысячи человек ушёл на север и по тонкому льду переправился через Днепр, потеряв множество людей утонувшими в полыньях. Преследуемый казаками, он добрался 20 ноября до расположения Наполеона в Орше, сохранив лишь 800—900 человек.

Еще один интернет-миф про оловянную чуму (это уже вранье полное) – источник http://ru.wikipedia.org/wiki

«Оловянная чума» — одна из причин гибели экспедиции Скотта к Южному полюсу в 1912 г. Она осталась без горючего из-за того, что топливо просочилось через запаянные оловом баки

Роберт Фалкон Скотт англ. Robert Falcon Scott

17 января 1912 года.

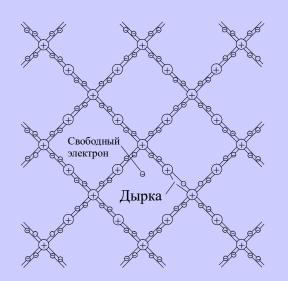
Ру́аль А́мундсен

14 декабря 1911 года.

- Валентная зона не перекрывается с зоной проводимости. Этому случаю отвечает образование *диэлектриков* и *полупроводников*. Типичные диэлектрики есть как среди ионных кристаллов, например LiF и CaF₂ (12 эВ), так и среди ковалентных кристаллов, например алмаз (5,3 эВ).
 - На границе между полупроводниками и диэлектриками находится карбид кремния SiC (3 эВ).

• Типичные полупроводники - кристаллы со структурами типа алмаза-сфалерита: Ge (0,75), **Si** (**1,12**), AlSb (1,60), CdS (2,3 эB).

Типичные полупроводники



$$\Delta E$$
 B Ge = (0,75 \ni B), ΔE B Si = (1,12 \ni B)

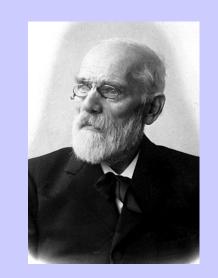
В кристалле полупроводника имеется два рода заряда

Они способны создавать в кристалле полупроводника электрический ток. Такой механизм проводимости называется электронно-дырочной проводимостью или собственной проводимостью.

Полупроводники

Электропроводность чистых (без примесей) полупроводников невелика из-за относительно небольшого содержания в них свободных электронов и дырок (концентрация дефектов ~10⁻⁵).

Ситуация меняется, если в кристалл чистого полупроводника добавить незначительное количество атомов другого элемента с большей или меньшей валентностью атомов.


Возникает Примесная проводимость

Ge (примесь Sb) — избыток e - электронная или npoвodumocmь n-типа.

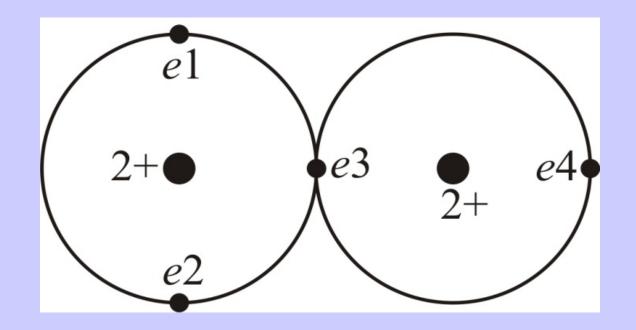
Ge (примесь In) — недостаток e - дырочная или npoводимость <math>p-типа

ОСТАТОЧНАЯ (ВАН ДЕР ВААЛЬСОВА) СВЯЗЬ

В 1878 г. голландский физик Йоханнес Ван-дер-Ваальс ввел поправку в уравнение состояния реальных газов, чтобы учесть слабые силы притяжения между молекулами.

Силы Ван дер Ваальса действуют во всех кристаллах без исключения, но в чистом виде они проявляются только в кристаллах инертных газов с заполненными электронными оболочками

Первое объяснение происхождения сил сцепления в таких кристаллах принадлежит Ф. Лондону (1927-1930)


Ранняя работа Лондона

Heitler W., London F. Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik (нем.) // Zeitschrift für Physik : 1927. H. 44. S. 455-472.,

написанная совместно с Вальтером Гайтлером, являлась первой в мире статьей по квантовой химии. В статье впервые была правильно объяснена связь в гомоядерных молекулах, таких как H_2 .

В 1930 году он дает объяснение взаимодействию между атомами двух инертных газов, которое состоит в притяжении на больших расстояниях, и в отталкивании на малых.

Электрическое поле мгновенного диполя некоторого атома взаимодействует с таким же диполем в любом соседнем атоме, если они достаточно сближены, и вследствие этого происходит их взаимная ориентация

Такая синхронизация движений электронов всегда приводит к тому, что между атомами возникают слабые силы притяжения и отталкивания.

В отличие от кулоновских сил, которые изменяются по закону R^{-2} , *дисперсионные силы* притяжения спадают с увеличением расстояния гораздо быстрее, их потенциал пропорционален R^{-6} .

Силы отталкивания еще сильнее зависят от расстояния, их потенциал аппроксимируется функцией R^{-12}

В чистом виде силы действуют только в инертных газах. Они не направлены!!

Атомы инертных газов не могут образовать между собой ковалентные связи из-за того, что переход к валентному состоянию требовал бы затраты слишком большой энергии. Однако известно, что при низких температурах инертные газы способны конденсироваться и образовывать кристаллы, построенные из атомов по принципу плотнейших упаковок.

• В твердом состоянии они имеют кубическую гранецентрированную структуру (только изотопы гелия кристаллизуются также и в плотнейшей гексагональной структуре, и в кубической объемноцентрированной)

• В 60-х годах прошлого века были открыты соединения тяжелых инертных газов типа XeF₂, XeF₄, XeO₄, благодаря чему представления об их валентности были расширены.

ОСТАТОЧНАЯ (ВАН ДЕР ВААЛЬСОВА) СВЯЗЬ

Дисперсионные взаимодействия слабы

Молекулярные кристаллы (He, Ne, Ar, Kr, Xe, N_2 O_2 Cl_2 CH_4 CO) легко превращаются в пар

Впрочем, таких кристаллов, в которых межмолекулярные связи обусловлены только дисперсионными силами, очень немного.

ОСТАТОЧНАЯ (ВАН ДЕР ВААЛЬСОВА) СВЯЗЬ

Энергия сцепления молекулярных кристаллов, ккал/моль

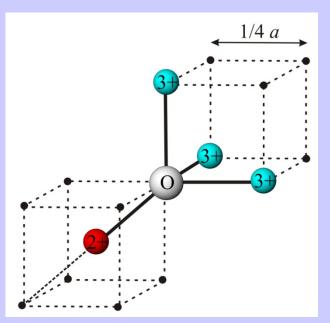
Кристалл	$oldsymbol{U}$ выч	$oldsymbol{U}$ эксп	Кристалл	$oldsymbol{U}$ выч	<i>U</i> эксп
He	0.07	-	N_2	1.59	1,86
Ne	0.39	0.46	\mathbf{O}_2	1.46	2.06
Ar	1.77	1.87	$\mathbf{Cl_2}$	7.0	6.4
Kr	3.0	2.85	CH ₄	2.42	2.70
Xe	3.8	3.85	CO	1.82	2.09

Диполь-дипольные взаимодействия

Иногда отдельные молекулы или фрагменты кристаллической структуры обладают **постоянными диполями**

Силы, действующие между диполями, называются

ориентационными

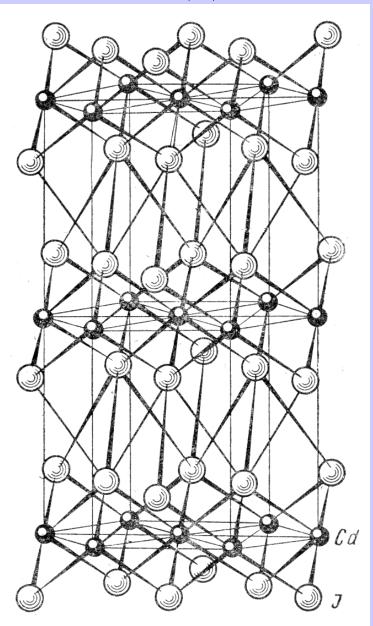

В 1929 г. П. Дебай показал, что диполь может индуцировать в другой молекуле другой диполь. Оба диполя будут ориентироваться в таком направлении, что возникает притяжение между ними

ОСТАТОЧНАЯ (ВАН ДЕР ВААЛЬСОВА) СВЯЗЬ

АНИОННАЯ ПОЛЯРИЗАЦИЯ. ИОН-ДИПОЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ

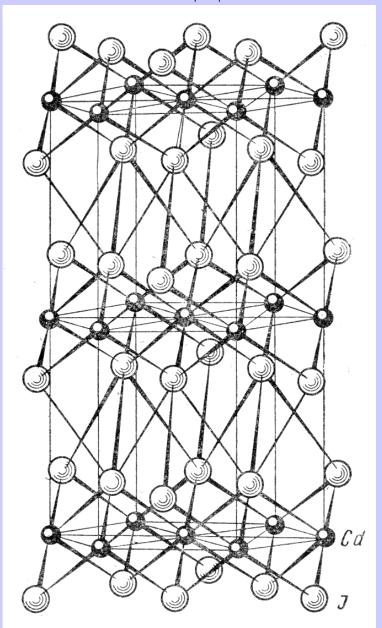
Диполь-дипольные и ион-дипольные взаимодействия возникают всегда, когда в структуре существуют занятые атомами узлы с низкой локальной симметрией

Ближайшее окружение ионов кислорода в структуре шпинели:

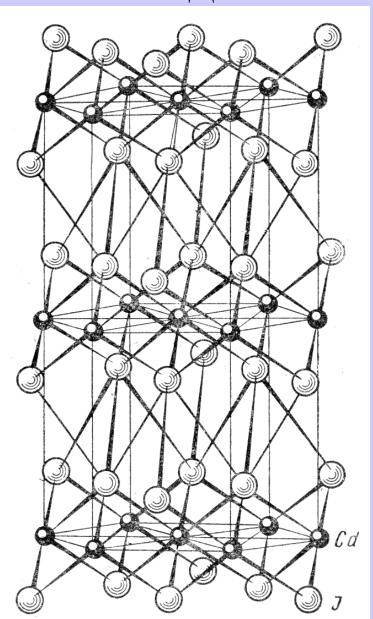

А – тетраэдрический,

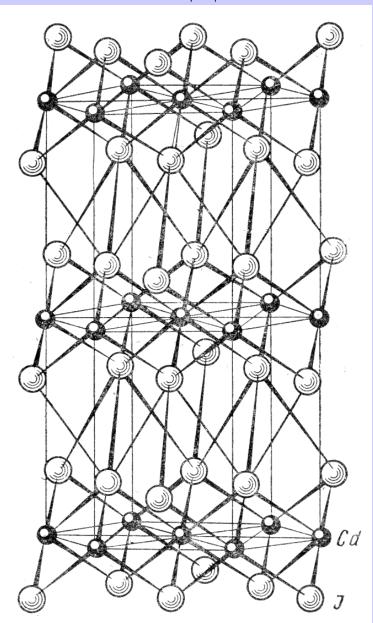
В - октаэдрический катионы

ОСТАТОЧНАЯ (ВАН ДЕР ВААЛЬСОВА) СВЯЗЬ


АНИОННАЯ ПОЛЯРИЗАЦИЯ. ИОН-ДИПОЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ

Расчеты показывают, что для нормальной структуры кислородной шпинели энергия анионной поляризации составляет около 6% полной энергии структуры. Почти 2% - вклад поляризации кислорода в энергию структуры рутила TiO_2 (для фторидов ZnF_2 , MnF_2 со структурой типа рутила он составляет около 0,4%). Для корунда Al_2O_3 добавка к энергии решетки за счет анионной поляризации около 0,7%.


Доля энергии анионной поляризации **резко увеличивается** при переходе к кристаллам с крупными легко поляризующимися анионами (Cl^- , Br^-I^- , S^{2-} , Se^{2-} , Te^{2-}).



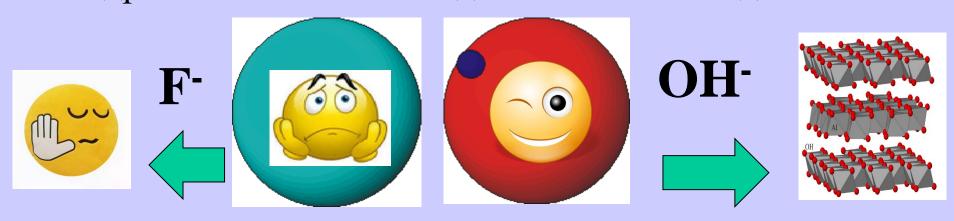
По этой причине они обладают слоистыми структурами, в которых ближайшее окружение аниона асимметрично, что способствует его поляризации

Такое асимметричное окружение приводит к сильной анионной поляризации и образованию <u>в позициях аниона индуцированных диполей</u>.

По этой причине они часто обладают слоистыми структурами, в которых ближайшее окружение аниона в высшей степени асимметрично, что способствует его поляризации. Так, в структуре типа CdI₂ каждый ион йода окружен шестью ионами йода в той же плоскости и тремя ионами йода в соседнем слое. Другими его ближайшими соседями являются три иона кадмия в том же пакете.

Такое асимметричное окружение приводит к сильной анионной поляризации и образованию в позициях аниона индуцированных диполей Они ориентированы перпендикулярно к плоскости слоя.

Громоздкое суммирование взаимодействий типа ион-диполь и диполь-диполь в таких структурах может быть заменено некоторой добавкой ΔA к постоянной Маделунга A

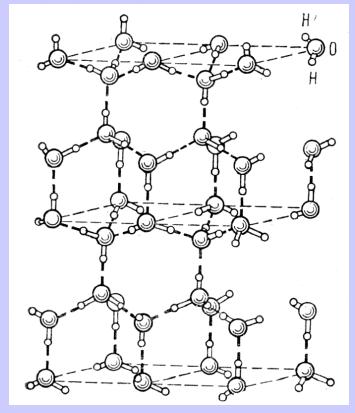

Кристалл	NiI ₂	NiC1 ₂	CdI_2	Cd(OH) ₂	Ca(OH) ₂
Структурный тип	C19	C19	C6	C6	C6
c/a	1,683	1,665	1,616	1,344	1,366
A	4,431	4,335	4,388	4,636	4,644
ΔA	0,9	0,7	0,8	0,6	0,6
$A+\Delta A$	5,3	5,1	5,2	5,2	5,2

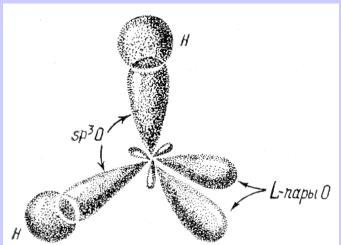
Можно видеть, что поправка ΔA составляет от 13 до 20% к величине A.

Это означает, что образование слоистых структур приводит к сильной электростатической стабилизации соединений с легко поляризующимися анионами.

Обратим внимание также на то, что среди слоистых структур **не встречаются** фториды из-за низкой поляризуемости иона F- и, наоборот, **очень часты** гидрооксиды благодаря тому, что близкий по размеру к F- гидроксил-ион OH- обладает постоянным диполем.

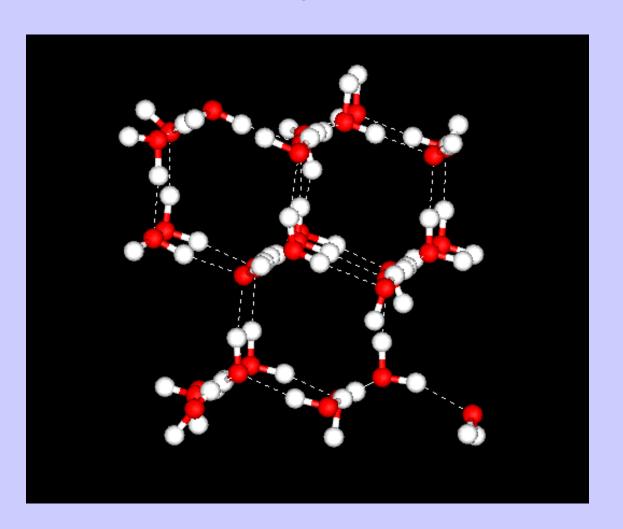
LiF кристаллизуется в структуре типа NaCl, а LiOH - в слоистой тетрагональной структуре


 ${
m MgF}_2$ - в структуре типа рутила, а брусит ${
m Mg(OH)}_2$ - в гексагональной слоистой структуре типа ${
m CdI}_2$


 AlF_3 - в структуре типа ReO_3 , $A1(OH)_3$ - в слоистых структурах гиббсита и бемита.

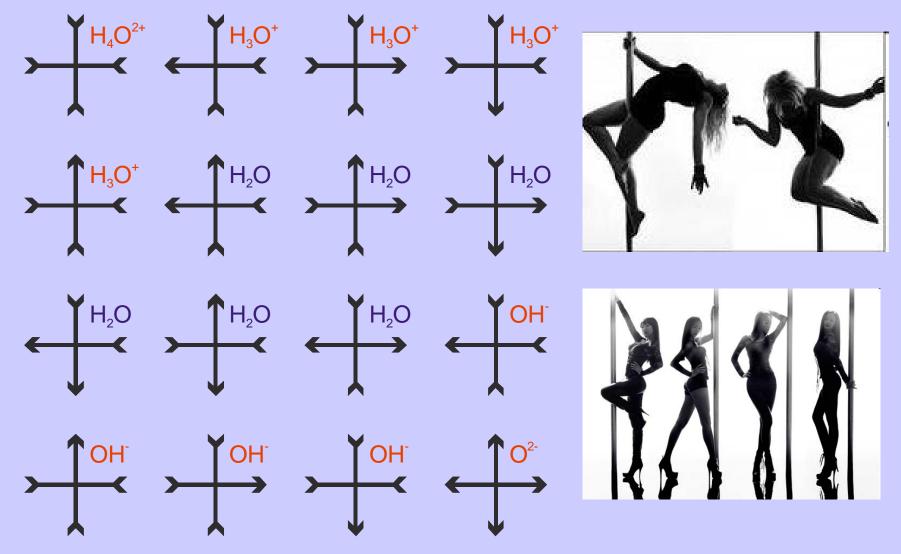
Дополнительная стабилизация слоистых структур гидрооксидов достигается за счет образования водородных связей О-Н...О

- Атом водорода (дейтерия, трития), кроме уже отмеченного ранее промежуточного положения на шкале электроотрицательностей между металлами и неметаллами, обладает еще двумя особыми свойствами
- Его атомный радиус (0,37 Å) очень мал
- У него нет внутренних электронов
- В предельном (теоретическом) случае полной ионизации H⁺, т.е. протон, практически лишается геометрических размеров.
- В результате соседняя молекула может оказаться рядом с данной молекулой, содержащей водород, не испытывая межэлектронного отталкивания. ВООБЩЕ!!! (полностью раздели)

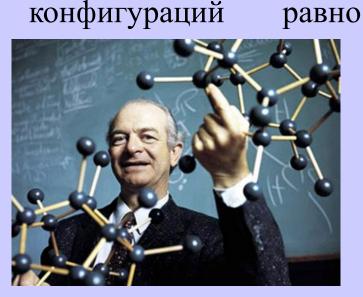

- Такое сближение действительно осуществляется, если партнером водорода является <u>небольшой по размеру</u> электроотрицательный атом (F, O, N, Cl).
- В подобных случаях, когда атом водорода связывается с *двумя* другими атомами, возникает так называемая *водородная связь*.
- Она была обнаружена еще в 1912 г. в органических соединениях, но ее природа могла быть понята только с возникновением квантовой механики.
- Атом водорода находится <u>не посередине</u> между теми двумя атомами, которые он связывает (кроме твердого HF, в котором связь более чем на 60% ионная, и в кристаллах с комплексным анионом HF₂-, таких как NaHF₂, NH₄HF₂ и т. п.) Короткое плечо обозначено сплошной линией, а длинное точками

Типичный пример характера смешанного водородной связи структура льда. В нем атомы кислорода находятся узлах В гексагональной решетки, сходной с решеткой вюртцита. В результате структура ЭТОГО льда очень рыхлая

Водороды, крутящиеся на шесте вокруг О

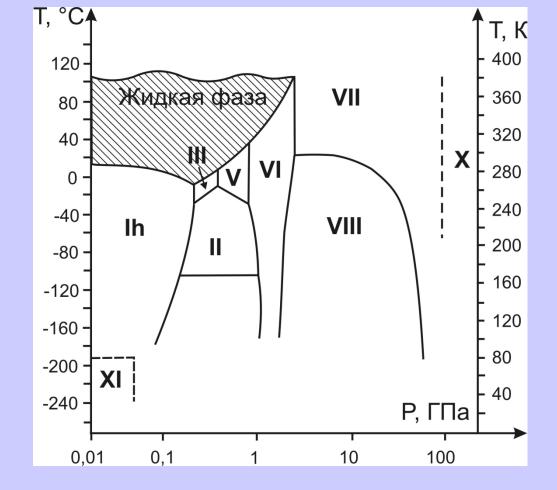


Т.е. структура 1H льда – постоянно дышит и в ней происходить постоянное вращение в соседних молекулах, причем согласованное!!! Это танец на шесте!


Водороды, крутящихся на шесте вокруг О

«Законы льда» Полинга. Стрелки внутрь (наружу) указывают, что Н находится в ближней (дальней) потенциальной яме

• Полное число разрешенных произведению вероятностей


$$W = (6/16)^N 2^{2N} = (3/2)^N$$

• Отсюда по уравнению Больцмана можно найти конфигурационную энтропию льда:

$$S = k \ln W = k N \ln(3/2) = 0.81$$
 кал/моль градус

• Экспериментальное значение остаточной (при ОК) энтропии равно 0.82 кал/моль град., что подтверждает модель Полинга.

Фазовая диаграмма льда. Давление (ГПа) дано в логарифмическом масштабе, температура слева — в градусах Цельсия, справа Кельвина, 1 — жидкая фаза. В природных условиях Земли вода кристаллизуется в одной модификации - 1H с гексагональной симметрией

Типичные значения энергии водородной связи (ккал/моль):

O-H...O

3-7;

C-H...O

3;

O-H....N

4-7;

N-H...O

3-4;

N-H...N

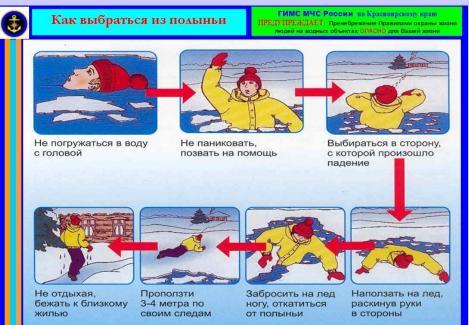
3-5;

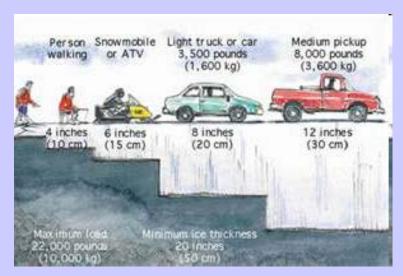
N-H...F

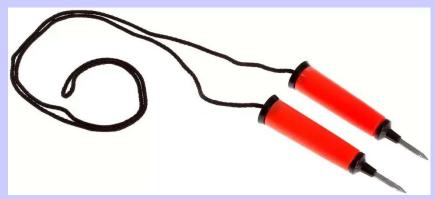
5;

C-H...N

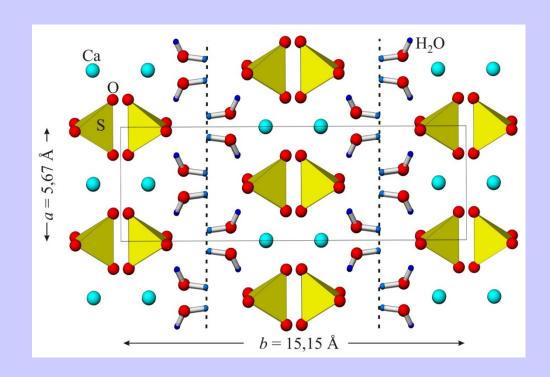
3-5;

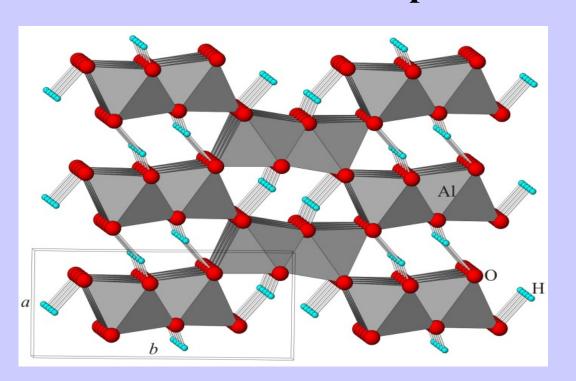

F-H...F


6-8.


В общем энергии большинства водородных связей лежат в интервале 2-8 ккал/моль, что составляет около $\frac{1}{10}$ от средней энергии электростатической или ковалентной связи

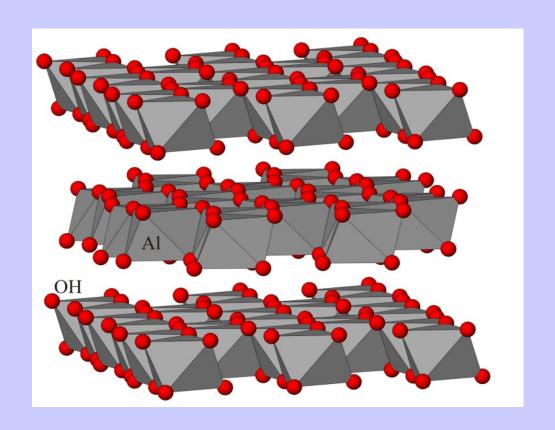
но в О-Н-О исполнении она существенно больше остаточной!

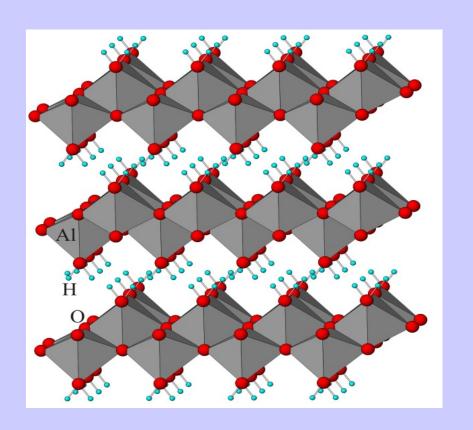




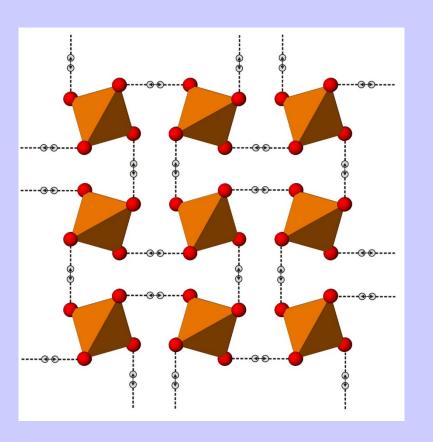
Как утверждал Л. Полинг еще в 30-х годах 20-ого века, благодаря небольшой энергии водородной связи небольшим энергиям активации ее образования разрыва она играет исключительную роль в процессах, происходящих при обычных температурах, т. е. в процессах, идущих на поверхности Земли, гидросфере и биосфере. В частности, структуры многих гипергенных минералов, т.е. образующихся в Земной коре под действием таких выветривания как вода, кислород, углекислота, и при участии солнечной энергии, включают фрагменты, скрепленные благодаря водородным связям.

В структуре гипса водородные связи между молекулами воды соединяют двойные слои из полиэдров $\text{CaO}_6(\text{H}_2\text{O})_2$ и тетраэдров SO_4 и отвечают за совершенную спайность вдоль этих плоскостей с водородными связями.


Структура гипса CaSO₄ (H₂O)₂ в проекции на плоскость 001. Слои с водородными связями между молекулами воды показаны вертикальным пунктиром


Структура диаспора AlO(OH) в плоскости *a-b*

В структуре диаспора α -AlOOH, в которой кристаллизуются также гетит FeOOH, гроутит MnOOH и другие минералы, двойные цепи из октаэдров Al(O,OH)₆, вытянутые вдоль оси c, связаны друг с другом кислородными вершинами и сильными водородными связями.

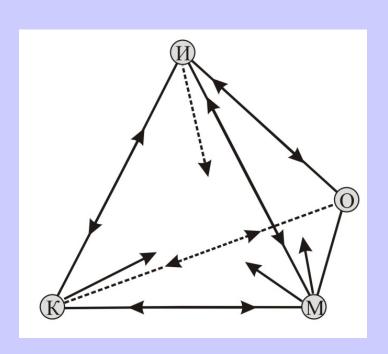

Структура гиббсита $Al(OH)_3$

В структурах минералов группы $\it гиббсита$ $\rm Al(OH)_3$ слои из октаэдров $\rm Al(OH)_6$, образующих шестичленные кольца, связаны между собой водородными связями.

Структура бемита γ-AlOOH, состоящая из слоев, лежащих в плоскости *a-c*.

В структурах *бемита* γ -AlOOH и *лепидокрокита* γ -FeOOH октаэдры $M(O,OH)_6$ связываются ребрами в двойные слои, которые соединяются между собой водородными связями.

Упаковка тетраэдров PO_4^{3-} в кристалле КДП KH_2PO_4 . Водородные связи показаны пунктиром с указанием дальней (ближней) потенциальной ямы. Атомы К не показаны.


Ионы $(PO_4)^{3-}$ связаны с четырьмя ближайшими соседями при помощи атомов H, которые могут находиться в двух положениях – на ближнем или дальнем конце каждой связи O—H—O.

Как и в предыдущем случае структуры льда, неупорядоченным конфигурациям протонов в КДП соответствует большая остаточная энтропия; значение последней точно такое же, как для гексагональной структуры льда.

Ось 4-го порядка в тетрагональной ячейке задает некоторое выделенное (особое) направление. Конфигурации, в которых атомы Н упорядочиваются вдоль главной оси являются более выгодными энергетически выгодными. Это приводит к спонтанной электрической поляризации всего кристалла и появлению его сегнетоэлектрических свойств.

Таким образом, рассмотрев большое разнообразие типов и разновидностей химической связи в кристаллах, можно сделать общий вывод о единстве природы химической связи во всех случаях. Она заключается в электростатическом взаимодействии электронов и ядер внутри и между атомами, сближенными на расстояние, когда возникает эффективное перекрывание электронных оболочек.

Тетраэдр, образованный четырьмя крайними типами химической связи:

И - ионной,

К - ковалентной,

М - металлической,

О - остаточной.

Стрелками обозначены взаимные переходы